Improvement of Image Sticking in Liquid Crystal Display Doped with γ-Fe2O3 Nanoparticles
نویسندگان
چکیده
Image sticking in thin film transistor-liquid crystal displays (TFT-LCD) is related to the dielectric property of liquid crystal (LC) material. Low threshold value TFT LC materials have a weak stability and the free ions in them will be increased because of their own decomposition. In this study, the property of TFT LC material MAT-09-1284 doped with γ-Fe₂O₃ nanoparticles was investigated. The capacitances of parallel-aligned nematic LC cells and vertically aligned nematic LC cells with different doping concentrations were measured at different temperatures and frequencies. The dielectric constants perpendicular and parallel to long axis of the LC molecules ε⊥ and ε//, as well as the dielectric anisotropy Δε, were obtained. The dynamic responses and the direct current threshold voltages in parallel-aligned nematic LC cells for different doping concentrations were also measured. Although the dielectric anisotropy Δε decreased gradually with increasing temperature and frequency at the certain frequency and temperature in LC state for each concentration, the doping concentration of γ-Fe₂O₃ nanoparticles less than or equal to 0.145 wt % should be selected for maintaining dynamic response and decreasing free ions. This study has some guiding significance for improving the image sticking in TFT-LCD.
منابع مشابه
Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method
Nanomaterials have achieved remarkable technological advances in bulk materials due to their excellent physical, chemical and biological properties. cerium oxide (CeO2) nanostructured doped with Fe ions is attractive due to improvement in redox properties, transport property and surface-to-volume ratio. In this research, Fe-doped CeO2 nanoparticles (NPs) were prepared by s...
متن کاملSynthesis of benzimidazole derivatives using Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles both under solvent and solvent-free conditions
Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+) was found to be a useful catalyst for the synthesis of benzimidazole derivatives from o-phenylenediamine and aldehydes under solvent and solvent-free conditions at 80 °C. This reaction affords the corresponding benzimidazole derivatives compared with the classical reactions this method consistently gives a high...
متن کاملSynthesis of benzimidazole derivatives using Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles both under solvent and solvent-free conditions
Ni2+ supported on hydroxyapatite-core@shell γ-Fe2O3 nanoparticles (γ-Fe2O3@HAp-Ni2+) was found to be a useful catalyst for the synthesis of benzimidazole derivatives from o-phenylenediamine and aldehydes under solvent and solvent-free conditions at 80 °C. This reaction affords the corresponding benzimidazole derivatives compared with the classical reactions this method consistently gives a high...
متن کاملSynthesis and characterization of magnetic γ- Fe2O3 nanoparticles: Thermal cooling enhancement in a sinusoidal headbox
Nano-size maghemite (γ-Fe2O3) particles were prepared in one step using ultrasound radiation. The obtained nanoparticles were characterized by SEM, TEM , XRD, FTIR, and VSM. The results revealed that the synthesized nanoparticles were spherical, mono-dispersed and uniform. Furthermore, the crystalline structure of nanoparticles endorsed by X-ray diffraction study. The FTIR spectra have provided...
متن کاملStructural, magnetic and electrical properties of pure and Dy-doped Fe2O3 nanostructures synthesized using chemical thermal decomposition technique
Pure (S1) and Dy3+-doped α-Fe2O3 (S2 and S3) nanoparticles were prepared by a combustion synthesis method at 700 ºC for 8 h using Fe(acac)3 (Tris(acetylacetonato)Iron(III)) as raw material. Characterizations of the prepared powders were carried out by powder X-ray diffraction (PXRD). Structural analysis was performed b...
متن کامل